
Computability of Bass-Serre structures

Christian Perfect

February 28, 2011

1 Building blocks

1.1 Functions

Let Z≥0 denote the non-negative integers. A function f(x1, . . . , xn) is a map,

f : Zn≥0 → Z≥0,

taking n ≥ 0 parameters and resulting in a single value.

1.2 Notation

Now I will describe the notation and constructions I will use to define functions.
E ≡ E′ := D means I will write E or E′ to mean D.

1.2.1 Arity

Functions in general can take any number of parameters, so it is clearly imprac-
tical to write out definitions of each operation for each possible arity. When the
arity of a function f doesn’t matter, I will write it as f(x), where x represents
an arbitrarily big vector. When a function has to take at least a specific number
of parameters y1, . . . , yn, and potentially more, I will write f(x, y1, . . . , yn)

1.2.2 Composition

f ◦ g(x) ≡ f(g(x)) := C(f, g)(x)

or just
f ◦ g := C(f, g).

1

1.2.3 Recursion

Definitions of recursive functions f := R(g, h) will follow this format:

f(x, 0) := g(x),

f(x, n+ 1) := h(n, f(x, n),x).

Note that the parameter of recursion n can be made to be in any position by
composition with the projection functions:

f(x1, . . . , xm, n) := R(g, h)(x1, . . . , xm, , n),

f ′(x1, . . . , xk, n, xk+1, . . . , xm) := C(f, P 1
m+1, . . . , P

k
m+1, P

m+1
m+1 , P

k+1
m+1, . . . , P

m
m+1)

= f(x1, . . . , xm, n).

1.2.4 Iteration

Finite iteration of a function is achieved by repeatedly applying the composition
operator.

f (n) := C(f, C(f, C(f, . . . C(f︸ ︷︷ ︸
n−1 compositions

, f)).

1.2.5 Infix operators

An infix operator is simply a function of two variables, so for any operator ∗
some suitable function f∗ could be defined:

x ∗ y := f∗(x, y.)

1.2.6 Sets

A set S ⊆ Nd is defined by its characteristic function χS .

χS(x) :=

{
1 if x ∈ S,
0 if x /∈ S.

1.2.7 Relations

A relation is defined by the set of things which satisfy it. In fact, a d-ary relation
can be thought of as a subset of Nd, so the same notation as for sets can be

2

used. In addition, for binary relations R I will write,

xRy := χR(x, y).

1.2.8 Logic

The concept of falsity will be represented by the number 0, and all other values
will represent truth. With this in mind, predicates P (x) can be written out as
ordinary functions once the logical operations have been defined.

1.3 Constructing functions

We will begin by defining the primitive functions:

• The zero function. The zero function is a nullary function which returns
the number 0. For brevity I will write 0 to mean the zero function.

• The successor function. The successor function s(x) := x + 1 is a unary
function which adds 1 to its input.

• The projection functions. For every n > 0 and every 1 ≤ i ≤ n there is a
projection function P in(x1, . . . , xn) := xi. P in is an n-ary function which
returns its ith parameter.

There are two operations we shall use to create new functions from these prim-
itives.

• Composition: h := C(f, g1, . . . , gm) means that h(x) := f(g1(x), . . . , gm(x))

• Recursion: h := R(f, g) means that h(x, 0) := f(x), and h(x, n + 1) :=
g(n, h(x, n),x)

A bound variable is one which is used to define a function, not passed as a
parameter into it. For instance, in P in, n and i are bound variables.

Mixing functions of different arities can be dealt with systematically. For every
n-ary function f , and every m ≥ n, we can define an m-ary function fm such
that:

fm(x1, . . . , xn, . . . , xm) := C(f, P 1
m, . . . , P

n
m) = f(x1, . . . , xn).

Variable substitution can also be dealt with systematically:

f(x1, . . . , y, . . . , xn) := f(x1, . . . , y(x1, . . . , xn), . . . , xn) = C(f, P 1
n , . . . , y, . . . , P

n
n).

3

2 Properties of classes of functions

A class C of functions is closed under finite composition if, whenever f, g1, . . . , gm
all belong to C, then C(f, g1, . . . , gm) also belongs to C. In short, a function
defined by finitely many compositions of functions in C is also a function in C.

A class C is closed under bounded recursion if, whenever f, g, h belong to C and
∀x, R(f, g)(x) ≤ h(x), then R(f, g) also belongs to C. In other words, if a
recursion on two functions of C is bounded everywhere by another function in
C, then that recursion is also in C.

3 The Grzegorczyk hierarchy

The Grzegorczyk hierarchy is an infinite nested hierarchy of classes En of func-
tions which are each closed under finite composition and bounded recursion.

E0 is the smallest class of functions which contains the primitive functions and is
closed under composition and bounded recursion. So E0 consists of the primitive
functions, defined previously, and whatever else can be constructed by finitely
many applications of the composition and bounded recursion operations.

En+1, for n ≥ 0, contains all of En and anything obtained by a single unbounded
recursion on En functions, and is closed under finite composition and bounded
recursion.

3.1 The stockpile of functions

Below I will give explicit definitions for the operations of elementary arithmetic,
plus some more useful things, using the notation defined above. I have tried to
use definitions which, though not the most obvious, place functions as low down
on the hierarchy as possible.

3.2 E0 functions

Add a constant n to x by iterating the successor function n times on x:

+n(x) ≡ x+ n := s(n)(x). (1)

Note that n is a bound variable, that is, there is a different function +n for each
n.

Construct a function cn returning a constant number n by composing +n with
z:

cn := +n(0). (2)

4

From now on I will just write the number n to mean the application of the
function cn(), when appropriate.

Decrement by 1:

dec(0) := 0,

dec(n+ 1) := n.
(3)

Proper subtraction:

x−̇0 := x,

x−̇(y + 1) := dec(x−̇y).
(4)

x−̇y is bounded by P 1
2 ≡ x, so belongs to E0.

Signature:

sg(0) := 0,

sg(x+ 1) := 1.
(5)

And reverse signature:

sg(0) := 1,

sg(x+ 1) := 0.
(6)

Equality:
x = y := eq’(x, y, sg(x−̇y)). (7)

eq’(x, y, 0) := sg(y−̇x),

eq’(x, y, n+ 1) := 1.

eq’ is bounded by c1, so belongs to E0.

Logical AND:

x ∧ 0 := 0,

x ∧ (n+ 1) := x.
(8)

∧ is bounded by P 1
2 ≡ x, so is in E0.

Logical OR:

x ∨ 0 := x,

x ∨ (n+ 1) := 1.
(9)

∨ is bounded by s ◦ P 1
2 ≡ x+ 1, so is in E0.

5

Logical NOT:
¬x := sg(x). (10)

Ordering:

x > y := sg(x−̇y),

x ≥ y := (x > y) ∨ (x = y),

x ≤ y := ¬(x > y),

x < y := (x ≤ y) ∧ ¬(x = y).

(11)

The smallest of two numbers:

min(x, y) := x−̇(x−̇y). (12)

Remainder when dividing x by y:

0 mod y := 0,

(x+ 1) mod y := rm’
(
y−̇ ((x mod y) + 1) , x mod y

)
.

(13)

rm’(0, y) := 0,

rm’(x+ 1, y) := y + 1.

rm’(x, y) is bounded by y+ 1 so belongs to E0. x mod y is defined by recursion
on E0 functions and is bounded by y − 1, so belongs to E0.

3.3 E1 functions

Adding two numbers together is achieved by an unbounded recursion on the
successor function.

x+ 0 := x,

x+ (y + 1) := (x+ y) + 1.
(14)

Hence addition must belong to E1 and not E0.

We can define another version of +x where x is unbound:

+x(y) := x+ y. (15)

. This version is in E1. This is really an abuse of notation, but it will be useful
in a little while.

The biggest of two numbers:

max(x, y) := x+ (y−̇x). (16)

Note that max(x, y) is bounded by one of P 1
2 or P 2

2 , but I don’t think there’s a
way of defining it without using addition, so it has to be in E1.

6

Absolute difference:
|x− y| := (x−̇y) + (y−̇x). (17)

Any constant multiple n · x is produced by n compositions of addition:

n · x := +(n)
x (0). (18)

So we can also get any positive- and constant-coefficient linear polynomial
a1x1 +a2x2 + . . . anxn by finite compositions. For polynomials with negative co-
efficients, computing all the positive terms then subtracting the negative terms
will give the closest match, because we can’t use negative numbers.

Quotient: ⌊
0

y

⌋
:= 0,⌊

x+ 1

y

⌋
:=

⌊
x

y

⌋
+ sg ((x+ 1) mod y) .

(19)

Does x divide y:
x | y := sg(x mod y). (20)

Bounded minimisation:

min
i<1

P (x, i) := sg(P (x, 0)),

min
i<y+1

P (x, i) :=

(
min
i<y

P (x, i)

)
+ sg

((
min
i<y

P (x, i)

)
= y

)
.

(21)

Because we always have to return a value, if there is no value under the bound
such that the predicate holds, then we return the bound.

Bounded maximisation:

max
i<y

P (x, i) := y−̇min
i<y

P (x, y−̇i). (22)

If P is a E1 function then so are bounded minimisations and maximisations over
P , because they are defined by a recursion over E1 functions, bounded by y.

3.4 E2 functions

Multiplication is an unbounded recursion on the addition operation:

x · 0 := 0,

x · (y + 1) := (x · y) + x.
(23)

7

We can get xn, when n is constant, by n compositions of multiplication by x, and
hence any (positive-coefficient) polynomial by finite compositions of addition
and multiplication. So polynomials belong to E2.

Series sum: ∑
i<0

f(x, i) := 0,∑
i<y+1

f(x, i) := f(x, y + 1) +
∑
i<y

f(x, i).
(24)

Note that the level of the sum on the hierarchy really depends on the level of
f(x, i). However, we can say that if f is in E2 then

∑
i<y f(x, i) is also in E2

because it entails y additions. If y is a bound variable and f is in E1, then
we could even place the sum in E1 by defining the sum as y compositions of
addition.

Bounded existential quantifier:

∃i<yP (x, i) :=
∑
i<y

P (x, i). (25)

Definition by cases: if Pi(x), 1 ≤ i ≤ k is a finite collection of mutually exclusive,
exhaustive predicates, then we can define

f(x) :=


g1(x) if P1(x),
...

...

gk(x) if Pk(x).

In our language, this is:

f(x) :=
∑
i<k+1

gi(x) · sg(Pi(x)), (26)

where k is a bound variable. If all the Pi and gi are in E2, then so is f , because
we are just doing k multiplications and additions.

3.5 E3 functions

E3 is where just about all the really useful operations are.

First of all, we can get exponentiation by unbounded recursion on the multipli-
cation operation:

x0 := 1,

xy+1 := x · xy.
(27)

8

Factorial:

0! := 1,

(x+ 1)! := (x+ 1) · x!.
(28)

Series product: ∏
i<0

f(x, i) := 1,∏
i<y+1

f(x, i) := f(x, y + 1) ·
∏
i<y

f(x, i).
(29)

If f is in E3 then so is the product
∏
i<y f(x, i), as it consists of y multiplications.

If y is a bound variable, then we can define the product using y compositions of
multiplication instead of the recursion, so if f is in E2 then the series product
is too.

Universal quantifier:

∀i<yP (x, i) :=
∏
i<y

P (x, i). (30)

Primality:
x prime := (x > 1) ∧ ∀z<x ((z < 2) ∨ ¬(z | x)) . (31)

The first prime after x:

nextprime(x) := min
i≤x!+1

(i prime) ∧ (i > x). (32)

The bound on this function comes from Euclid or some such bearded Greek.
Note that this is an exceptionally inefficient way of finding primes.

The nth prime:

p0 ≡ p(0) := 2,

pn+1 ≡ p(n+ 1) := nextprime(pn).
(33)

Exponent of x in the decomposition of y:

[y]x := max
i<y

(
xi | y

)
. (34)

3.6 Lists

We will be working with n-tuples, or lists, extensively. All of the list operations
can be defined as E3 functions on numbers by way of the Gödel encoding.

9

Gödel encoding of an n-tuple:

x ≡ [x0, . . . , xn] :=
∏

0≤i≤n

pxi+1
i . (35)

The +1 in the exponent is so we can reliably determine the length of a list.
The bold x is shorthand so I don’t have to write out the brackets formation.
It shouldn’t be confused with the use of x previously to mean an arbitrary
number of parameters in a function application. An encoded list x is just a
single number.

Value of nth position in an encoded list:

(x)i := [x]pi − 1. (36)

Length of an encoded list:

|x| := min
i<x

([x]pi = 0) . (37)

The index of the first occurrence of a given value in an encoded list:

find(x, n) := min
i<|x|

(x)i = y. (38)

Whether an encoded list contains a given value:

y ∈ x := find(x, y) < |x|. (39)

The largest element of an encoded list:

biggest(x) := biggest′(x, |x| − 1), (40)

biggest′(x, 0) := (x)0,

biggest′(x, n+ 1) := max
(
(x)n+1,biggest′(x, n).

)
To obtain the sub-list of x starting at position s and ending at position e.:

x[s . . . e] ≡ slice(x, s, e) :=

e′∏
i=s′

(pi−s′)
(x)i+1, (41)

e′ := max(0,min(e, |x| − 1)),

s′ := max(0,min(s, e′)).

To append a single value to the end of an encoded list:

splice(x, n) := x · pn+1
|x| . (42)

10

To concatenate two encoded lists:

x ++ y := splice(x, (y)0) ++ y[1 . . . |y| − 1] (43)

x++ y is bounded by p
(|x|+|y|)(biggest(x)+biggest(y))
|x|+|y| , so is E3-computable.

4 Graphs

Definition 4.1. A graph is a set of vertices V and a set of directed edges
E = E+ ∪ E−, with two associated maps. The first,

e→ (ι(e), τ(e)),

associates each edge with its initial and terminal vertices. The second,

e→ ē,

is an involution on the edges, which must satisfy the conditions that ¯̄e = e and
ι(ē) = τ(e), ∀e ∈ E. We will write eij to mean the edge with ι(eij) = i and
τ(eij) = j. For any pair of edges e and ē, one is ‘positive’ and belonging to E+,
and one ‘negative’ and belonging to E−.

Definition 4.2. A path in a graph is a sequence of edges (e1, e2, . . . , en) such
that τ(ei) = ι(ei+1), 1 ≤ i < n. A path is reduced if it does not contain an edge
followed by its inverse, that is, if ei+1 6= ēi, 1 ≤ i < n.

Definition 4.3. A circuit is a path (e1, . . . , en) with ι(e1) = τ(en).

Definition 4.4. A graph is connected if there exists a path between each pair
of its vertices.

5 Computable Trees

Definition 5.1. A tree is a connected, non-empty graph with no reduced cir-
cuits.

A rooted tree has a particular vertex v0 said to be at the ’top’. In an ordered
tree, the set of children of each vertex is ordered, so there is a leftmost child,
and so on.

Definition 5.2. A plane recursive tree is a rooted, ordered tree obtained by
a process which begins with the root node and recursively adds vertices below
existing ones.

We can assign a labelling to a plane recursive tree by giving vertices labels
corresponding to the order in which they were added to the tree, beginning
with 0 for the root. This way, the sequence of labels encountered on a path
heading downwards is always increasing.

11

If we say that the positive edges point downwards, every positive edge can also
be given a unique labelling by saying that the edge eij has label max(i, j). For
the purposes of the computation, negative edges will have the same label as
their positive counterpart.

Definition 5.3. Suppose we have a tree T = (V,E) with root vertex v0. T is
En-computable if there is an En-decidable labelling

i : V → N,

(we can assume i(v0) = 0) and an En-computable ‘parent function’

φT : i(V)→ i(V),

which gives the label of the parent of a vertex. For completeness, we also require
that φT (v0) = i(v0).

Definition 5.4. A finite plane recursive tree can be entirely described in a
canonical way by a depth-first walk. Note that every node has a single parent
and a finite ordered set of children. The process on ‘visiting’ a vertex vi goes
as follows: for each child node vj , travel along eij and ‘visit’ vj , then travel
backwards along eij . The sequence of labelled edges travelled along by beginning
this process at v0 is the depth-first walk of the tree.

Note that the root vertex’s label will not appear in this sequence because it has
no positive edge leading into it.

Because an edge and its inverse have the same label, the first occurrence of a
label in the sequence represents the positive edge, and the second occurrence
represents the trip back up the negative edge.

The depth-first walk can be encoded as a Gödel number by the method in
Section 3.6. We will define a function φt(n) which takes an encoded depth-first
walk t of a tree and gives the label of the parent of the vertex with label n.

5.1 Some functions to work with encoded trees

Let t be an encoded depth-first walk of a tree.

To find the first and second occurrences of the edge with label n in the walk:

fst(t, n) := find(t, n),

snd(t, n) := find (t[fst(t, n) + 1 . . . |t| − 1], n) .
(44)

find is E3-computable, and snd is bounded by |t| so is also E3-computable.

To get the label of the nth child of the root:

child(t, 0) := (t)0,

child(t, n+ 1) := (t)snd(t,child(t,n))+1.
(45)

12

child is constructed from E3 functions and is bounded by the number of vertices
in the tree. As the tree is finite, child is E3-computable.

The depth-first walk of the subtree descended from a vertex vn is the subse-
quence found between the two occurrences of n in t.

To find the subtree descended from the nth child node of the root:

subtree(t, n) := t[fst(child(t, n)) + 1 . . . snd(child(t, n))− 1]. (46)

subtree is constructed from E3 operations so is E3-computable.

The number of children of the root node:

kids(t) := min
i<t

(child(t, i) = 0). (47)

kids is constructed by bounded minimisation on E3 operations so is E3-computable.

Whether the root has a child with label n:

haschild(t, n) :=

(
µ

i<kids(t)

(child(t, i) = n)

)
< kids(t). (48)

Finally, the parent function φt. The idea is basically to do the depth-first walk,
remembering which vertex you just came from. If you reach a subtree which
doesn’t contain n then turn back, or if you reach the required vertex then return
the label of the vertex you just came from.

φt(0) := 0,

φt(n) := p′(x, n, 0).
(49)

p′(x, n, p) :=


0 n 6∈ t,

p haschild(t, n),

p′(subtree(t, z), n, child(t, z)) otherwise.

z := min
i<kids(t)

(n ∈ subtree(t, i)).

We will also need to know if the tree contains an edge eij :

eij ∈ t⇔ φt(i) = j ∨ φt(j) = i (50)

Lemma 5.5. A finite ordered tree is E3 computable.

Proof. As the tree is finite, of course its labelling is an E3-decidable subset of
N, and φt as defined above is E3-computable.

13

6 Computability of Bass-Serre groups

Let Γ = (V,E) be a connected graph.

Definition 6.1. Associate with each vertex v a vertex group Gv = 〈Xv |Rv〉,
with the Xv all pairwise disjoint. Call the set of all vertex groups G.

For each edge e ∈ E associate two isomorphic groups Ae ≤ Gι(e) and Be ≤ Gτ(e),
with Ae = Bē, and an isomorphism φe : Ae → Be.

(G,Γ) is called a graph of groups.

Definition 6.2. Let T be a spanning tree of Γ (a subtree of Γ containing
every vertex), with a root vertex v0. Then G = π1(G,Γ, T, v0) is called the
fundamental group of (G,Γ), defined by

G = π1(G,Γ, T, v0) = (∗v∈VGv) ∗
φe

F (E) (51)

The generators of G are

X =

(⋃
v∈V

Xv

)
∪

(⋃
e∈E
{e}

)
,

and the relations are

R =

(⋃
v∈V

Rv

)
∪{e−1Aee = Be,∀e ∈ E}∪{e−1 = ē, ∀e ∈ E}∪{e = 1,∀e ∈ T}.

(this looks horrible, please help!)

Definition 6.3. A word w ∈ X∗ is admissible if it is in the form

w = a0e1a1e2 . . . an−1enan

where (e1, . . . , en) is a circuit in Γ with vertex sequence (v0, . . . , vn), such that
v0 = vn, vi = ι(ei+1) = τ(ei), 0 < i < n, and ai ∈ Gvi , i = 0, . . . , n.

It will be more convenient from now on to refer to Gvi by Gi.

Lemma 6.4. (Higgins?) Let w ∈ X∗ be an admissible word, and suppose
w =G 1. Then either:

• n = 0 and a0 = 1 in Gv0 , or

• n > 0 and there exists 0 < i < n such that ei+1 = ēi and ai ∈ Bei .

Definition 6.5. Let φT (n) be the parent function for T . The path in T from

14

vi to vj can be found by freely reducing the path ψ(i, j), defined by:

ψ(0, 0) := ε,

ψ(i, 0) := (ei,pT (i)) · ψ(pT (i)),

ψ(0, i) := ψ(i, 0)−1,

ψ(i, j) := ψ(i, 0)ψ(0, j).

(52)

The free reduction of ψ(i, j) will be implicit from now on.

What we really want is a function π(g) : G→ X∗ that gives an admissible word
beginning and ending at v0 and containing a representation of g as a contiguous
subword.

If g belongs to some Gvi , then π(g) = ψ(0, i) · g · ψ(i, 0). Otherwise, if g = eij ,
some edge letter, then π(eij) = ψ(0, i) · eij · ψ(j, 0).

Lemma 6.6. Let w be a word on G. Then by replacing each generator g by π(g)
and freely reducing the resulting word, we obtain an admissible word starting
at v0 which is equivalent to w. Call this word π(w), abusing notation a bit.

Proof. The new word is equivalent to w because the only letters we are adding
are edge letters from the spanning tree, which are all trivial in the presentation
of G.

Theorem 6.7. Suppose we have G = π1(G,Γ, T, v0), where Γ has ν ver-
tices. Suppose all the Gi are f.g. En-computable groups for n ≥ 3. Assume
all the identified subgroups are En-decidable, and all the isomorphisms φe are
En-computable. Then G is En+1-computable.

Proof. We will show that the word problem of G is En+1-decidable. We can
assume that the generating sets of all the Gv are disjoint.

Encode the depth-first walk of the spanning tree T as a Gödel number t per
Section 5.1. Then the parent function φt is E3-computable.

To define i(G), we will begin by using the first ν2 numbers to represent potential
edges. For any i = a ∗ ν + b and i ≤ ν2, i ∈ i(G)⇔ eab ∈ T .

We can assume the generators of the vertex groups have indices greater than
ν2. The rest of i(G) works the same way as the standard free group index
in Cannonito-Gatterdam. ((Not explained well: C-G assign a number to each
generator, and then words are encoded as sequences of those numbers paired
with a power, and the index of an element is the least index of an equivalent
word. I want the numbers assigned to the group generators to be greater than
ν2.))

Given a word w, compute w′ = π(w). We now need to split w′ into an admissible
sequence (a0, e1, . . . , en, an).

We must decide for each letter in w′ either which vertex group it is from or if it
is an edge letter. Assign to each letter wi of w′ a code as follows: If wi belongs

15

to Gi, then its code is i. If it is an edge letter, then its code is biggest(t) + 1.
We can then define a En-decidable equivalence relation ≈ on the indices of the
elements of G, whose equivalence classes correspond to the vertex groups plus
one more for each edge letter. For completeness, say that g 6≈ n whenever
n /∈ i(G).

As there are finitely many equivalence classes of≈, and they are all En-decidable,
≈ is En-decidable.

The next task is to split w′ into ‘syllables’, or contiguous subwords. A syllable
is either a single edge letter or a word from one of the vertex groups.

From now on, let w be an encoded admissible word.

Define a function which gives the position of the start of the syllable to which
(w)i belongs:

backtrack(w, 0) := 0,

backtrack(w, i+ 1) :=


i+ 1 (w)i+1 ≤ ν2,

i+ 1 (w)i 6≈ (w)i+1,

backtrack(w, i) (w)i ≈ (w)i+1.

(53)

backtrack is constructed from En operations and is bounded by |w|, so is En-
computable.

Now, the start of the nth syllable is given by:

start(w, 0) := 0,

start(w, n+ 1) := min
start(w,n)+1≤i<|w|

(backtrack(w, i) 6= start(w, n)). (54)

The number of syllables can be computed like so:

numsyllables(w) = min
i<|w|

(start(w, i) = |w|. (55)

And now the nth syllable itself can be found:

syllable(w, n) = w[start(w, n) . . . start(w, n+ 1)− 1]. (56)

syllable is constructed from En-computable functions and is bounded by w so
is En-computable.

We can then use the conditions of Lemma 6.4 to determine if w′ = (a0, e1, . . . , en, an),
encoded as w′, is trivial.

If n = 0, then w′ = 1⇔ a0 = 1, which is an En-decidable question.

If n > 0, then we need to find a sequence of the form e−1Aee or eBee
−1. The

16

first of these is given by

min
i<numsyllables(w′)−2

((syllable(w′, i) = e ∈ E)∧

(syllable(w′, i+ 1) ∈ Be)∧
(syllable(w′, i+ 2) = syllable(w′, i)−1))

(57)

(and the same the other way round for Ae.) Note that since the first syllable
must be an edge letter, we can say the last syllable is the inverse of the first
by checking its length is 1, then computing its inverse. We don’t need to know
how to compute the whole multiplication table to do this.

If the result of that calculation is numsyllables(w′) − 2 then w is not trivial.
Otherwise, we can replace the found sequence eBee

−1 with φe(syllable(w′, i+1),
and try again. The new word is still admissible and has fewer syllables than the
original one, so repeated applications of this process will eventually lead to a
word of one syllable or a negative answer. Because φe might increase the index
of the word, this recursion raises us up a level on the Grzegorczyk hierarchy.

So the word problem ofG is En+1(A) decidable, and henceG is En+1-computable.

7 Pregroups

A pregroup (P,D) is En-computable if:

• there is an En-computable indexing i : P → N,

• D is En-decidable as a subset of i(P)× i(P) (from now on we will consider
D as consisting of pairs of indices instead of pairs of elements),

• m : D → i(P) is En-computable.

Lemma 7.1. Let (P,D) be a countable, En-computable pregroup. The univer-
sal group U(P) is En+1-computable.

Proof. The index (i′,m′) of of U(P) will be on reduced P -words, encoded as
Gödel numbers. So it is only necessary to define the multiplication function.

Because of Theorem 4 in Rimlinger, any P -words X and Y represent the same
element of U(P) if and only if X ∼ Y , that is, they are the same length and
there is an interleaving of X equal to Y . The upshot is, when we have a reduced
P -word X, we can find the Y ∼ X of minimal index by enumerating all the P -
words of length lP (x). This step needs to be performed after any multiplication,
so take that as read from here on.

Say we have two reduced P -words, x = x1 . . . xm and y = y1 . . . yn. If (xm, y1) /∈
D, then the product m′(x,y) is the concatenation x ++ y. (There can’t be any
other P -word of the same length equivalent to xy and with lower index, can
there?)

17

If xm = y−1
1 , then m′(x,y) = m′([x1 . . . xm−1], [y2 . . . yn]).

If xy = z ∈ P , then m′(x,y) = m′(m′([x1 . . . xn−1], [z]), [y2 . . . yn]). As z may
have an index as big as any En function, the recursion becomes unbounded at
this point, so m′ is En+1 computable.

18

